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Synthesis of spermidine involves the action of two enzymes, spermidine synthase (Spe) and S-

adenosylmethionine decarboxylase (Samdc). Previously we cloned and disrupted the gene

encoding Spe as a first approach to unravel the biological function of spermidine in Ustilago

maydis. With this background, the present study was designed to provide a better understanding

of the role played by Samdc in the regulation of the synthesis of this polyamine. With this aim we

proceeded to isolate and delete the gene encoding Samdc from U. maydis, and made a

comparative analysis of the phenotypes of samdc and spe mutants. Both spe and samdc mutants

behaved as spermidine auxotrophs, and were more sensitive than the wild-type strain to different

stress conditions. However, the two mutants displayed significant differences: in contrast to spe

mutants, samdc mutants were more sensitive to LiCl stress, high spermidine concentrations

counteracted their dimorphic deficiency, and they were completely avirulent. It is suggested that

these differences are possibly related to differences in exogenous spermidine uptake or the

differential location of the respective enzymes in the cell. Alternatively, since samdc mutants

accumulate higher levels of S-adenosylmethionine (SAM), whereas spe mutants accumulate

decarboxylated SAM, the known opposite roles of these metabolites in the processes of

methylation and differentiation offer an additional attractive hypothesis to explain the phenotypic

differences of the two mutants, and provide insights into the additional roles of polyamine

metabolism in the physiology of the cell.

INTRODUCTION

Polyamines are organic polycations required by all living
organisms (Pegg & McCann, 1982; Tabor & Tabor, 1984,
1985; Cohen, 1998). They have drawn interest because they
are essential for cell growth and differentiation, one model
of which is fungal dimorphism, which provides a useful
system to study their role (Ruiz-Herrera & Calvo-Méndez,
1987; Ruiz-Herrera, 1993, 1994; Guevara-Olvera et al.,
1993; Herrero et al., 1999; Jiménez-Bremont et al., 2001;
Blasco et al., 2002). The most common polyamines in
eukaryotes are putrescine, spermidine and spermine, but
some fungi lack spermine, and contain only putrescine and
spermidine (Nickerson et al., 1977; Valdés-Santiago et al.,

2009). Putrescine, the smallest of the polyamines and
precursor of the others, is the result of decarboxylation by
ornithine decarboxylase (ODC). In Ustilago maydis, we
observed that odc mutants were unable to carry out the
pH-dependent dimorphic transition, even using concen-
trations of putrescine that were high enough to satisfy their
growth requirements (Guevara-Olvera et al., 1997). A
similar behaviour was displayed by Yarrowia lipolytica
(Jiménez-Bremont et al., 2001) and Candida albicans
(Herrero et al., 1999) odc mutants. These mutants were
able to carry out the yeast-to-mycelium dimorphic
transition only in the presence of an exceedingly high
concentration of putrescine. These results clearly demon-
strated the role of polyamines in fungal differentiation, but
they failed to identify the polyamine(s) involved in the
process. This question was duly resolved in U. maydis by
analysis of mutants that lack putrescine (Valdés-Santiago et
al., 2010), demonstrating that spermidine is the important
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polyamine required for U. maydis dimorphism. Synthesis
of this polyamine requires the action of two enzymes,
spermidine synthase (Spe) and S-adenosylmethionine
decarboxylase (Samdc). The latter enzyme is responsible
for the decarboxylation of S-adenosylmethionine (SAM)
with formation of decarboxylated SAM (dcSAM), which
serves as donor of a propylamine group to putrescine in a
reaction catalysed by Spe (Pegg & McCann, 1982).

It is known that Samdc is synthesized as a proenzyme that
subsequently undergoes an intramolecular cleavage at a
serine residue to generate two non-identical subunits
termed a and b, both of which are indispensable
components of the mature enzyme (Pegg, 1986; Stanley,
1995). Genes encoding Samdc have been cloned from
several organisms, including Saccharomyces cerevisiae,
Caenorhabditis elegans, Leishmania donovani, Neurospora
crassa and mouse (Cohn et al., 1978; Da’dara & Walter,
1998; Hoyt et al., 2000; Roberts et al., 2002; Nishimura et
al., 2002). Samdc is regulated by both putrescine, which
increases the levels of enzyme activity, and spermidine,
which reduces them. In fact, the intracellular levels of
polyamines influence SAMDC expression at multiple steps,
including transcription, translation, protein half-life and,
as indicated, enzymic activity (Shantz et al., 1992; Stanley &
Pegg, 1991; Pegg et al., 1998). Additionally, the study of
samdc mutants in the systems mentioned above has
demonstrated the essential role of spermidine. However,
despite the characterization of some samdc mutants, little is
known regarding the existence of differences in their
phenotypic characteristics from mutants deficient in the
SPE gene.

Besides this multiplicity, gene disruption studies have
demonstrated that spermidine is essential for vegetative
growth and differentiation, while putrescine is only the
precursor of higher polyamines and appears to have a
minor role in the stress response and/or virulence
(Chattopadhyay et al., 2008; Valdés-Santiago et al., 2010).
One specific function of spermidine is to serve as precursor
of the translation initiation factor eIF-5A, although the
precise mechanism of action at the molecular level is
mostly unknown (Schnier et al., 1991; Zanelli & Valentini,
2007).

U. maydis, a plant-pathogenic Basidiomycota fungus, is an
excellent model for the study of different biological
phenomena, such as fungal phytopathogenicity, DNA
recombination and repair, long-distance transport in
hyphal growth, mitosis, and dimorphism (Holliday, 1985;
Sánchez-Martı́nez & Pérez-Martı́n, 2001; Bölker, 2001;
Basse & Steinberg, 2004; Klosterman et al., 2007; Steinberg
& Pérez-Martı́n, 2008). It is also a model to understand
polyamine functions, considering that it contains only two
polyamines, putrescine and spermidine (Guevara-Olvera et
al., 1997, Valdés-Santiago et al., 2009, 2010). U. maydis has
a sexual cycle that is easy to reproduce in the laboratory or
greenhouse, possesses an efficient transformation system,
and there are accessible dominant selection markers that

provide the basis for gene replacement (Tsukuda et al.,
1988; Fotheringham & Holloman, 1990). In addition, its
genome has been sequenced and annotated (Kämper et al.,
2006).

Previously we reported the isolation and phenotype of U.
maydis spe mutants (Valdés-Santiago et al., 2009), and in
this communication we describe the isolation and muta-
tion of the SAMDC gene, which permitted the determina-
tion of the similarities and differences that exist between
the phenotypic behaviour of samdc and that of the
previously obtained spe mutants.

METHODS

Strains and growth conditions. U. maydis haploid strains (Table 1)
were maintained at 280 uC in liquid complete medium (CM;
Holliday, 1961) supplemented with 50 % glycerol, and were recovered
on solid CM plates and incubated at 28 uC. U. maydis mutant strains
were recovered on minimal medium (MM; Holliday, 1961)
supplemented with 5 mM putrescine and/or 0.5 mM spermidine
(Sigma-Aldrich), and 300 mg hygromycin B ml21 (Calbiochem) and/
or 20 mM carboxin. spe mutants were supplemented with 0.2 mM
lysine (Valdés-Santiago et al., 2009). Yeast or mycelial cultures were
obtained as described by Ruiz-Herrera et al. (1995). Cell dry weight
was measured after drying overnight at 65 uC. Protoplasts were
prepared with lytic enzymes from Trichoderma harzianum (Sigma-
Aldrich) as described by Tsukuda et al. (1988). Escherichia coli
transformation was performed by standard procedures (Sambrook &
Russell, 2001).

Nucleic acid manipulation. Isolation of genomic DNA was
conducted as reported by Hoffman & Winston (1987). PCR was
carried out using Taq DNA polymerase or, when required, PCR
SuperMix High Fidelity (Invitrogen). Vector dephosphorylation,
ligation and DNA digestion were done according to manufacturer’s
instructions (Invitrogen). DNA sequencing reactions were performed
using an ABI PRISM 377 DNA automated sequencer (Perkin Elmer)
with dsDNA as template, and primers M13F and M13R (Invitrogen)
or other gene-specific primers (Table 2). Northern analyses were
performed as described by Sambrook & Russell (2001). A 32P-labelled
1 kb EcoRI–HindIII samdc gene fragment (see below) was used as
hybridization probe.

Plasmid constructs. To delete the gene encoding U. maydis Samdc
(SAMDC), plasmid pDsamdc was constructed. Briefly, the full gene
including its 59 and 39 flanking sequences was amplified by PCR with
primers Samdc5 and Samdc3 (Table 2) using genomic DNA from U.
maydis strain FB2 (Table 1) as template. The PCR product was cloned
into plasmid pUC13, and the EcoRI–HindIII ORF fragment of the
SAMDC gene was replaced with the carboxin-resistant cassette from
plasmid pCBX-AC2 (Valdés-Santiago et al., 2009).

To complement U. maydis samdc mutants, a plasmid was constructed
as follows. The full SAMDC gene including its promoter and
terminator was PCR-amplified using primers Samdc5 and Samdc3.
The PCR product (3.1 kb) was cloned into plasmid pCR2.1
(Invitrogen), generating plasmid pSAMDC. Next, the SAMDC gene
was recovered as a BamHI–NotI fragment and cloned into the same
sites of the episomal plasmid pHyg101 (Mayorga & Gold, 1998),
generating plasmid pSAMDCHyg-20, which was used to transform
protoplasts of samdc : : CbxR mutant strains. The presence of the
SAMDC gene sequence in transformants was confirmed by PCR
analysis using a primer pair specific to the gene (data not shown). All
constructs used were confirmed by DNA sequencing.

%paper no. mic055954 charlesworth ref: mic055954&

L. Valdés-Santiago and others

2 Microbiology 158



Mating analysis. Mating was analysed by the ‘fuz’ reaction (Banuett,

1992, 1995). Briefly, drops of suspensions of the mating strains to be

tested were placed one over the other on charcoal-MM agar plates

with the required additions, and incubated overnight at 25 uC. The

plates were checked for the presence of aerial hyphae, which give the

colony a white, fuzzy appearance indicative that the strains are

sexually compatible.

Stress assays. To determine the sensitivity of U. maydis to different

compounds, decimal dilutions of cell suspensions were inoculated on

plates of solid media amended with the compound to be tested, and

growth was assessed as described previously (Valdés-Santiago et al.,

2009).

Virulence assays. These were performed as previously described

(Martı́nez-Espinoza et al., 1997). Briefly, 10 day-old seedlings of

maize cv cacahuazintle were inoculated using a syringe and needle

with a mixture of sexually compatible strains. The plants were kept in

a greenhouse, and symptoms were recorded for 15 days after

inoculation.

Isolation of segregants from inoculated plants. Teliospores

produced in the tumours induced in maize plants inoculated with

sexually compatible U. maydis strains were suspended in 1.5 % CuSO4

for 2 h to kill vegetative cells, filtered through cheesecloth, washed

twice with sterile distilled water, recovered by centrifugation and

plated on solid CM. After 12–18 h, the sporidia formed by

germination of teliospores were recovered by washing the plates with

sterile distilled water, and inoculated on plates containing hygro-

mycin B and/or carboxin to determine their phenotype (Chavez-

Ontiveros et al., 2000). Mating type (fuz reaction, see above) and
auxotrophy to spermidine were tested in segregants thus obtained.

The presence of the wild-type or the disrupted SAMDC gene was

analysed by PCR using primer pair pCBX and AC110, and the
presence of the wild-type or mutant ODC gene was determined by

PCR according to Valdés-Santiago et al. (2009) using primers 59odc

and 39odc.

Determination of SAM and dcSAM levels. U. maydis cells were

grown in liquid MM with addition of 0.1 mM spermidine or other

requirements (see Methods and the legend to Fig. 6) for 48 h,
harvested by centrifugation, washed twice with sterile distilled water,

suspended in 6 % perchloric acid (1 ml) for 1 h at room temperature

and recovered by centrifugation (Shobayashi et al., 2006), and the
supernatants were subjected to MS analysis. MS measurements were

carried out on a Micromass ZQ 2000 Quadrupole instrument with

MassLynx 4.0 as control software. Quantification was performed

using electron spray ionization (ESI) in positive mode. The capillary
voltage was set to 3 kV, the cone voltage to 60 V and the extractor

voltage to 3 V. The RF lens was left at 0. A source temperature of

100 uC and a temperature of 350 uC were used at a desolvation gas
flow of 250 l h21 and a cone gas flow of 20 l h21. In the Analyzer

section, LM and HM resolution of 0.15 and an ion energy of 0.5 were

set. The multiplier was adjusted to a value of 650. The samples were
directly injected with a flow rate of 10 ml min21. Continuous spectra

were collected in the range of 15–2000 m/z, with a run duration of

1 min, a scan time of 10 s and an inter-scan time of 0.1 s. MassLynx
raw spectra were converted to mzXML data format using MassWolf.

The further analysis of mass spectra was performed using the

OpenMS/TOPP suite, version 1.7.0 (1, 2). First ;, a pipeline was written
for TOPPAS, executing the following tasks for all spectra: file

conversion to mzML, merging all spectra of a sample, NoiseFilter

sgolay with a frame length of 21 and polynomial order of 4, followed
by a PeakPicker with a signal to noise of 1 and a peak width of 0.15.

Subsequently, the corresponding peak data were extracted manually

from the processed spectra. Protonized SAM has a monoisotopic

weight of 399.145 m/z. Peaks of this m/z were evaluated, with a mass
tolerance of 0.3 m/z. The corresponding peak intensities were

transferred to Microsoft Excel for further evaluation. A calibration

curve for SAM in the range between 5 and 50 mM gave a correlation
coefficient, R2, of 0.9961. Based on the signal-to-noise ratios of

calibrants and samples, the detection limit was estimated to be about

1 mM SAM in solution; based on the dry weight and the extraction
volume from the respective experiment, the SAM content of the fungi
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Table 1. Strains used in this study

Strain Relevant genotype Reference or source

U. maydis strains

FB2 a2b2 Banuett & Herskowitz (1989)

FB1 a1b1 Banuett & Herskowitz (1989)

samdc6 a2b2 Dodc/samdc : : HygR/CbxR This study

samdc7 a2b2 Dodc/samdc : : HygR/CbxR This study

5-11 a1b1 Dsamdc : : CbxR This study

LV71 a2b2 Dsamdc : : CbxR This study

4samdcR a2b2 Dsamdc : : CbxR/pLV20 This study

7samdcR a2b2 Dsamdc : : CbxR/pLV20 This study

11samdcR a2b2 Dsamdc : : CbxR/pLV20 This study

LG4 a2b2 Dodc : : HygR Guevara-Olvera et al. (1997)

LV54 a2b1 Dspe-sdh : : CbxR Valdés-Santiago et al. (2009)

LV7 a1b2 Dspe-sdh : : CbxR Valdés-Santiago et al. (2009)

E. coli strain

DH5a F9 Invitrogen

Table 2. Primers used in this study

Primer Sequence (5§–3§) Orientation

Samdc5 GTACGTTGACTCGTGACTGTG Forward

Samdc3 ACATGCATAGCACAGGCGAAC Reverse

pCBX GACCTGCCCCAAGAACCTCAACCCTG Forward

AC110 CGCACCGGGAGTCAAGCCAGAGAAAG Reverse

59odc CAACATGGACGAGCTCGAAAAGAT Forward

39odc GTAAGCGCCCATGTTTTCGTAGAC Reverse

Phenotypes of U. maydis samdc and spe mutants
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was calculated. For statistical analyses and graph drawing, SOFA

Statistics 0.9.20 and R version 2.13.1 were employed. In the case of

dcSAM, the corresponding peak data were extracted manually from

the processed spectra. Protonized dcSAM has a monoisotopic mass of

355.155 m/z. Peaks of this m/z were evaluated, with a mass tolerance

of 0.3 m/z. The corresponding peak intensities were transferred to

Excel for further evaluation. The mean±SEM of data corresponding to

triplicates from six different SAM and dcSAM samples are reported.

RESULTS

Identification and cloning of the U. maydis
SAMDC gene

The U. maydis gene encoding S-adenosylmethionine
decarboxylase (Samdc) was identified in the U. maydis
genome database at the Broad Institute (http://www.
broadinstitute.org/annotation/genome/ustilago_maydis/
Home.html), corroborated at the Munich Information
Center for Protein Sequences (MIPS) (http://mips.
helmholtz-muenchen.de/genre/proj/ustilago/), and, finally,
the BLASTX algorithm (Altschul et al., 1997) was used to
search the databases with fungal Samdc proenzymes as
queries: C. albicans (EEQ46120), S. cerevisiae (NP_014590)
and Y. lipolytica (XP_504183). In this way the putative U.
maydis SAMDC gene, corresponding to the annotation
number Um10792 at MIPS, was identified. This gene
showed no introns and encoded a predicted ORF of 556 aa
in length, with the characteristic Samdc domain spanning
almost the full sequence. Its degree of identity with
enzymes from Malazzesia globosa, Schizophyllum commune
and Coprinopsis cinerea was of the order of 40 % at the
amino acid level. The U. maydis protein has a higher Mr

than homologues from some Ascomycota species. Thus,
Samdc proteins from N. crassa and S. cerevisiae contain 503
and 396 aa, respectively (Hoyt et al., 2000). However,
despite these differences, the amino acid residues predicted
to be important for the proenzyme cleavage and formation
of the pyruvoyl group (during the maturation process of
Samdc, a specific serine residue is converted to a pyruvoyl
residue), AYLLSESSMF, are conserved in all of them (Fig.
1, arrow). With this information, specific primers were
designed, and the whole U. maydis gene with the estimated
promoter and terminator elements was amplified by PCR,
cloned into an episomal pHyg101 plasmid, and sequenced.

Disruption of the SAMDC gene using an odc
mutant as a recipient strain

Essentially we followed the method of Fotheringham &
Holloman (1989). The disruption cassette from plasmid
pDsamdc (4.5 kb) was PCR-amplified with primers
Samdc5 and Samdc3, and the fragment was used to
transform protoplasts from the U. maydis LG4 odc mutant
(Table 1), as indicated above. Putative transformants
resistant to carboxin and hygromycin B were recovered
on solid MM medium, pH 7, with added sorbitol and
other requirements (5 mM putrescine and 0.5 mM sper-

midine), and confirmed by PCR-based screening using
primers pCBX and pAC110 (Table 2), where the expected
PCR product of ~1.5 kb was amplified (not shown).
Auxotrophy to polyamines was confirmed (see below), and
odc/samdc double mutants samdc6 and samdc7 were
selected for further experiments.

Auxotrophic requirements of the odc/samdc
double mutants

Taking into consideration that the SAMDC gene encodes
an enzyme essential for spermidine synthesis, we expected
that odc/samdc double mutants would require the enzyme
to grow. Mutants were able to grow on two subcultures
without polyamines, after which their polyamine pools
were exhausted and they failed to grow in media without
polyamines, although they grew in the presence of 0.1 or
0.5 mM spermidine at a rate comparable with that of the
wild-type (results not shown). Although odc/samdc
mutants were unable to produce putrescine through the
ODC pathway, the spermidine acetylase-oxidase route
(Valdés-Santiago et al., 2009, 2010) provided enough of
this polyamine to cover their requirements (Fig. 2).

Isolation of samdc single mutants by sexual
recombination in planta

Using sexual recombination in planta between an a2b2 odc/
samdc double mutant and the FB1 wild-type strain (a1b1),
it was possible to isolate a set of single samdc mutants,
selecting strains 5-11 (samdc : : CbxR a1b1) and LV71
(samdc : : CbxR a2b2) to conduct further studies. Mutants
were confirmed by Northern analysis (results not shown).

Complementation of samdc mutants

Through transformation of a samdc mutant with a plasmid
containing a functional copy of the SAMDC gene, it was
possible to obtain SAMDC revertant strains (4samdcR,
11samdcR, 7samdcR) resistant to carboxin and hygromicin.
The presence of the SAMDC gene in these strains restored
the capacity to grow in the absence of spermidine.

Effect of different stress conditions on samdc
mutants

The effect of 10 mM LiCl, 3 mM H2O2, different
concentrations of menadione, 0.005 or 0.05 mM Rose
Bengal (RB), 0.2 or 0.7 mM ascorbic acid, 1 M sorbitol,
0.5 M CaCl2 or 1 M NaCl on cell growth was assayed as
described in Methods. Polyamine pools of the U. maydis
mutants were depleted by subculturing twice in polyamine-
free medium, followed by inoculation on plates supple-
mented with 0.1 mM spermidine. In the absence of
inhibitors only slightly reduced growth rates were observed
for 5-11 (samdc) and LV54 (spe) mutants as compared with
the FB2 wild-type (control) and 4samdcR (revertant)
strains (Fig. 3a). On the other hand, under some stress
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conditions, mutants showed growth impairment. Both
mutants were completely inhibited by 1 M NaCl, but in
contrast, no effect was observed on wild-type FB2 or
complemented 4samdcR strains (Fig. 3b). Interestingly,
Li+ addition resulted in growth inhibition only of the
samdc and not of the spe mutant, FB2 or the complemented
strain (Fig. 3c). H2O2 (3 mM) or 0.05 mM menadione
completely inhibited the growth of the mutants and that of
the wild-type and complemented strains almost completely
(Fig. 3d, e). Concentrations of H2O2 or menadione higher
than 3 or 0.05 mM, respectively, completely inhibited the
growth of all strains (results not shown). Rose Bengal
(0.05 mM) had no effect on the wild-type and comple-
mented strains, and was barely inhibitory for the mutants,
the samdc mutant being slightly more sensitive (Fig. 3f).
Other concentrations tested were equally inhibitory for all
strains (results not shown). Other tested compounds,
sorbitol, CaCl2 and ascorbic acid, affected the growth of the
wild-type, revertant and mutant strains to the same extent
(results not shown).

Dimorphic transition induced by acid pH

U. maydis grows in the yeast form at neutral pH, and in the
hyphal form at acid pH (Ruiz-Herrera et al., 1995).
Previously, it was demonstrated that odc mutants were
unable to carry out the dimorphic transition, unless
cultivated at high putrescine concentrations (Guevara-
Olvera et al., 1997). To determine whether spermidine-less
mutants behaved in the same way, we carried out similar
experiments with samdc mutant 5-11 and spe mutant LV54,
and the results are shown in Fig. 4. It was observed that low
spermidine concentrations (5 mM) sustained vegetative
growth of both mutants (samdc or spe), but addition of a
higher concentration of spermidine (0.1 mM) was neces-
sary to induce the dimorphic switch of the samdc mutant
only, having no effect on the cell morphology of the spe
mutant. As expected, the wild-type strain and the revertant
grew in the mycelial form in pH 3 medium in the absence
of spermidine.

Mating analysis

We observed a concentration-dependent effect of spermi-
dine on mating of homologous strains of both types of
mutants: 5-11 (a1b1 Dsamdc : : CbxR)6LV71 (a2b2
Dsamdc : : CbxR) and LV54 (a2b1 Dspe : : CbxR)6LV7

%paper no. mic055954 charlesworth ref: mic055954&

Fig. 1. Alignment of Samdc proenzyme sequences from U. maydis

with those of several Basidiomycota and one Ascomycota fungi.
The amino acid sequences were aligned by the CLUSTAL W method.
Amino acid residue numbers refer to ***. Residues <that are
identical in U. maydis Samdc and in two other proenzymes are
shaded in black, while less conserved positions are shaded in grey.
Important amino acids involved in proenzyme cleavage and
formation of the pyruvoyl group are indicated with an arrow.
Other important motifs of the enzyme are indicated by black bars.
For the significance of 1, 2 and 3, refer to the Discussion.

Phenotypes of U. maydis samdc and spe mutants
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(a1b2 Dspe : : CbxR). In both cases, the intensity of dikaryon
formation increased, as revealed by the appearance of white
fuzzy filamentous colonies as we raised the concentration
of spermidine (see Fig. 5). Nevertheless, visually, samdc
mutant crosses did not attain the filamentous appearance
of wild-type strains, even at the highest spermidine
concentrations used, while spe mutant crosses behaved as
the wild-type cells at 0.5 mM spermidine (Fig. 5).

Virulence studies

In contrast to spe mutants, which generate tumours in
about 20 % of infected maize plants (Valdés-Santiago et al.,
2009), samdc mutants proved to be completely avirulent to
maize plants: out of a total of 128 plants inoculated with a
mixture of 5-11 and LV71 samdc sexually compatible
mutants, not a single one developed tumours, whereas
76.9 % of maize plants (out of a total of 79 plants)
inoculated with a mixture of FB1and FB2 strains formed
tumours. This avirulent phenotype agrees with the
behaviour of odc mutants, which are also unable to induce
tumours in maize plants (Guevara-Olvera et al., 1997;
Valdés-Santiago et al., 2010). The mutation was recessive,
since 82.5 % of 82 plants inoculated with a mixture of a
wild-type and a samdc strain formed tumours. Also, crosses
of the 4samdcR revertant with samdc mutant 5-11 reached
the tumour-formation level of wild-type crosses: 90 % of
the 62 infected plants formed tumours.

%paper no. mic055954 charlesworth ref: mic055954&

Fig. 2. Auxotrophic requirements of odc/samdc, samdc and odc

mutants. Strains were grown at 28 6C for 48 h on plates of solid
pH 7 MM containing or not containing the indicated polyamines =.
Wt, Wild-type.

Fig. 3. Stress response of spermidine auxotrophic mutants. Plates containing 0.1 mM spermidine and 0.2 mM lysine were
amended with the following test substances: (a) no addition (control), (b) 1 M NaCl, (c) 10 mM LiCl, (d) 3 mM H2O2, (e)
0.05 mM menadione, (f) 0.05 mM Rose Bengal, and were spot-inoculated with decimal dilutions of suspensions of the
indicated strains. The photograph was taken after 48 h of incubation at 28 6C.
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Determination of SAM and dcSAM levels in wild-
type and mutant strains

SAM was identified and quantified by MS in the mutants
LV54 (spe; Valdés-Santiago et al., 2009), 5-11 (samdc) and

LG4 (odc; Guevara-Olvera et al., 1997), and as a control, in
the wild-type strain FB2. In strains FB2 and LG4, the SAM
content was close to the detection limit of the method. The
respective calculated means of 7.4 and 9.2 pmol (mg dry
cell weight)21 were not significantly different, according to

%paper no. mic055954 charlesworth ref: mic055954&

Fig. 4. Dimorphic transition of spe and samdc

mutants compared with wild-type and rever-
tant strains. Cells were grown in liquid pH 3
MM for 24 h. (a, c) spe LV54 mutant, (b, d)
samdc 5-11 mutant, (e) 4samdcR revertant, (f)
FB2 wild-type. (a, b) Medium containing 5 mM
spermidine, (c, d) medium containing 0.1 mM
spermidine. (a, c) Medium containing 0.2 mM
lysine, (e, f) medium without additions. Bars,
15 mm.

Fig. 5. Mating capacity of spermidine auxo-
trophic mutants. Sexually compatible strains
were inoculated on plates of charcoal-contain-
ing MM, pH 7, plus 0.2 mM lysine, incubated
at 25 6C for 24 h, and photographed. (a) No
additions, (b) 0.1 mM spermidine, (c) 0.5 mM
spermidine. (1) Cross between FB1 a1b1 and
FB2 a2b2, (2) cross between LV54
(spe : : CbxR a1b2) and LV7 (spe : : CbxR

a2b1), (3) cross between LV71
(samdc : : CbxR a2b2) and 5-11
(samdc : : CbxR a1b1 >).
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Student’s t test. On the other hand, mutants LV54 and 5-11
contained high SAM levels: 45.8 and 118.8 pmol (mg dry
cell weight)21, respectively. These values are respectively
6.2- and 16.2-fold higher than that of the FB2 strain (Fig.
6a). According to Student’s t test these differences are
highly significant (P,0.001). dcSAM content in the wild-
type strain was close to the detection limit, agreeing with
reports for mammals, where dcSAM content is very low
(Pegg, 1988); similarly, in the LG4 mutant, the levels
appeared to be below the detection limit. As expected, no
dcSAM was present in mutant 5-11. In contrast, mutant
LV54 showed an aproximately 46-fold higher signal
intensity than the wild-type strain (Fig. 6b).

DISCUSSION

Our data indicate that U. maydis gene Um10792 encodes a
functional Samdc proenzyme. The size of the polypeptide
differs from those of Ascomycota, and even those of some
Basidiomycota, but this is not surprising, as comparative
analyses have revealed differences among bacterial, archaeal
and eukaryotic Samdc polypeptides, which in different
species range from 105 to 460 aa in length. In this sense,
Kozbial & Mushegian (2005) concluded that the sizes of
eukaryotic Samdc proteins and their characteristics may be
directly related to the duplication of the ancestor of
archaeal Samdc. Despite these differences, the Ser (Ser168)
that is the precursor of the pyruvoyl residue (Stanley et al.,
1989) is conserved in U. maydis Samdc. Additionally, the
motif surrounding this residue, YVLSESS, is fully con-
served in the U. maydis enzyme (Fig. 1). Other important
conserved motifs, shown in Fig. 1, are also present in the U.
maydis Samdc proenzyme: FEGPEKLLE (1), PCGYSAN (2)

and TIHVTPE (3). All these motifs are involved in the
processing reaction to form the two subunits and the
pyruvate prosthetic group (Xiong & Pegg, 1999). These
data reveal that the U. maydis enzyme possesses a similar
active site, and probably the same catalytic mechanism as
that exhibited by eukaryotic Samdc proteins in general.

Previously, we obtained spe mutants in U. maydis only
when we used the odc genetic background, possibly because
of the toxic effect of accumulated putrescine in the single
spe mutants (Valdés-Santiago et al., 2009). Taking this
precedent into consideration we used the same strategy to
delete the SAMDC gene. The double (odc/samdc) mutants
thus obtained were crossed in planta with sexually
compatible wild-type partners to obtain samdc single
mutants. The observation that these mutants behave as
spermidine auxotrophs is evidence that the fungus contains
a single Samdc-encoding gene. It also demonstrates that, as
would be expected, the SAMDC gene is essential. This
result is in agreement with data from L. donovani, N. crassa
and S. cerevisiae (Pitkin & Davis, 1990; Balasundaram et al.,
1991; Hamasaki-Katagiri et al., 1997; Roberts et al., 2002).

Phenotypic analysis of samdc mutants revealed that they
displayed the same basic characteristics as the spe mutants,
but, interestingly, although both Spe and Samdc enzymes
are required for spermidine biosynthesis, the mutants
showed some interesting phenotypic differences. An
important difference was that in contrast to U. maydis
spe mutants, which are able to induce tumours in about
20 % of inoculated maize plants (Valdés-Santiago et al.,
2009), samdc mutants are totally avirulent. The most
probable explanation for this discrepancy is the inability of
samdc mutants to mate and form invasive dikaryons, as

%paper no. mic055954 charlesworth ref: mic055954&

Fig. 6. Content of SAM (a) and dcSAM (b) in strains FB2 (wild-type), LV54 (spe), LG4 (odc) and 5-11 (samdc). Cells were
grown for 48 h in pH 7 liquid MM, but the medium for 5-11 was amended with 0.1 mM spermidine, and the medium for LV54
was amended with 0.1 mM spermidine plus 0.2 mM lysine.
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revealed by their negative fuz reaction in comparison with
spe mutants. Since only dikaryotic or diploid U. maydis
strains are virulent, a mixture of sexually compatible strains
unable to mate, as occurs with samdc mutants, would be
unable to infect their host.

Several authors have shown that polyamines are essential
for the stress response (Gill & Tuteja, 2010), and, according
to our data, U. maydis polyamine-deficient mutants show a
higher sensitivity than the wild-type strain to a range of
stress conditions (see Results and Valdés-Santiago et al.,
2009, 2010). In the present study we observed that samdc
cells are more sensitive than spe mutants to ionic stress
induced by LiCl. It is possible that samdc mutants are
affected to a higher degree than spe mutants in their
capacity to control the mechanisms of ion transport across
the plasma membrane. A possible hypothesis to explain
this phenotypic difference between the two types of
mutants is a dissimilarity in their capacity to transport
spermidine from the culture medium. Accordingly, it is
probable that samdc mutants have a reduced capacity to
take up the polyamine from the medium, reducing their
ability to mate and maintain their ionic equilibrium.

Our previous data revealed that spe mutants were unable to
carry out the dimorphic yeast-to-mycelium transition
(Valdés-Santiago et al., 2009), and the same phenotype
was displayed by samdc mutants, although unlike spe
mutants they recovered the wild-type phenotype by
addition of a higher spermidine concentration (0.1 mM).
This effect was not due to growth impairment in the
presence of the lower levels of spermidine, since the same
growth rate was obtained in both mutants using 0.1 mM
spermidine. Several hypotheses can be invoked to explain
this difference in behaviour of spe and samdc mutants, but
the most simple one would be the different cellular
locations of the two enzymes and the existence of different
pools of the polyamine. This phenomenon has been
demonstrated in Mucor rouxii, where it explains the
different sensitivities of growth and dimorphism to the
ODC inhibitor 1,4-diamino-2-butanone (Martı́nez-
Pacheco & Ruiz-Herrera, 1993).

One interesting, although expected, characteristic of samdc
mutants is that, unlike the wild-type, they accumulate high
levels of SAM, the substrate of Samdc, but in contrast it
was surprising that spe mutants accumulated SAM to levels
as high as half those of samdc mutants. In contrast, odc
mutants not only did not accumulate SAM, but their SAM
content was almost the same as that of the wild-type, a
result that agrees with the report that F9 teratocarcinoma
stem cells treated with a-difluoromethylornithine, an
inhibitor of ODC, exhibit a lower SAM content, probably
due to a compensatory increase in Samdc activity, which
consumes the substrate (SAM) (Stjernborg et al., 1993;
Frostesjö et al., 1997). It has been established that Samdc is
not only critical for polyamine biosynthesis but also plays a
key role in determining the disposition of the cellular SAM
pools (Pegg et al., 1998). A possible explanation of this

accumulation in spe mutants is that the accumulated
dcSAM (the product of Samdc) is unable fully to regulate
Samdc activity (Kashiwagi et al., 1990; Li et al., 2001).

Another collateral metabolite in the pathway of polyamine
biosynthesis, dcSAM, was found to be accumulated in the
spe mutant (46-fold increase in comparison with the FB2
wild-type strain), and was absent in odc and (as expected)
in samdc mutants. The relative contents of both SAM and
dcSAM in the spe and samdc mutants are important in
relation to DNA methylation, since DNA methylases and
Samdc share SAM as a common substrate (Fraga et al.,
2002; Ruiz-Herrera, 1994). For this reason, SAM accu-
mulation is related to the methylation of low-molecular-
mass compounds, nucleic acids and proteins (for reviews
on this topic see Chiang, et al., 1996; Fontecave et al., 2004;
Lieber & Packer, 2002; Lu, 2000; Mato et al., 1997; Loenen,
2006). Additionally, a negative relationship between the
levels of dcSAM and the state of DNA methylation, and a
positive relationship with cell differentiation, have been
established (Frostesjö et al., 1997). Accordingly, a plausible
hypothesis to explain the differences observed in the
phenotypes of samdc and spe mutants might be related to
their different levels of SAM and dcSAM, which have
important effects on different cellular functions. Examples
of the effects of dcSAM are the study of Duranton et al.
(1998), who reported that treatment of a Caco-2 cell line
with an inhibitor of Samdc gave rise to an increase in
global DNA methylation and the expression of a differ-
entiation marker, and the observation that depletion of
polyamine biosynthesis in F9 teratocarcinoma stem cells
gave rise to an increase in the level of dcSAM, leading to an
induction of differentiation that was counteracted by
specific inhibition of Samdc (Frostesjö et al., 1997).
Regarding SAM, it has been reported that inhibition of
its synthesis by 3-deazaadenosine promotes hypomethyla-
tion and differentiation of muscle (Scarpa et al., 1996), and
Fuso et al. (2001) have suggested the possibility of silencing
genes regulated by DNA methylation through the admin-
istration of exogenous SAM. Whether the observed
phenotypic differences between spe and samdc mutants
might be related to the differential effects of SAM and
dcSAM on the methylation of micro- and macromolecules
is an interesting possibility that deserves to be analysed.

ACKNOWLEDGEMENTS

This work was partially supported by Consejo Nacional de Ciencia y
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Fuso, A., Cavallaro, R. A., Orrù, L., Buttarelli, F. R. & Scarpa, S.
(2001). Gene silencing by S-adenosylmethionine in muscle differ-

entiation. FEBS Lett 508, 337–340.

Gill, S. S. & Tuteja, N. (2010). Polyamines and abiotic stress tolerance

in plants. Plant Signal Behav 5, 26–33.

Guevara-Olvera, L., Calvo-Mendez, C. & Ruiz-Herrera, J. (1993). The

role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J

Gen Microbiol 139, 485–493.

Guevara-Olvera, L., Xoconostle-Cázares, B. & Ruiz-Herrera, J.
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